

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

Fell of Ara

Lappset Group Ltd

Publishing date 3.11.2023 last updated 3.11.2023 valid until 3.11.2028

GENERAL INFORMATION

MANUFACTURER

Manufacturer	Lappset Group Ltd
Address	Hallitie 17, Rovaniemi
Contact details	sales@lappset.com
Website	www.lappset.com

EPD STANDARDS, SCOPE AND VERIFICATION

Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804+A2:2019 and ISO 14025
PCR	EPD Hub Core PCR version 1.0, 1 Feb 2022
Sector	Manufactured product
Category of EPD	Third party verified EPD
Scope of the EPD	Cradle to gate with modules C1-C4, D
EPD author	Susanna Kiviniemi, Greenstep Oy
EPD verification	Independent verification of this EPD and data, according to ISO 14025:
	Internal certification External verification
EPD verifier	A. M. Kloppenburg, SHR

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different

programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	Fell of Ara
Product reference	175527
Place of production	Talliin, Estonia and Rovaniemi, Finland
Period for data	2022

ENVIRONMENTAL DATA SUMMARY

Declared unit	One product							
Declared unit mass	1500 kg							
GWP-fossil, A1-A3 (kgCO2e)	1730							
GWP-total, A1-A3 (kgCO2e) including biogenic carbon	-374							
Secondary material, inputs (%)	17							
Secondary material, outputs (%)	82							
Total energy use, A1-A3 (kWh)	16200.0							
Total water use, A1-A3 (m3e)	418							

GOAL AND INTENDED APPLICATION OF THE STUDY

The Goal of the study was to provide information to the clients about the environmental impact of the product for the supply phase of a new playground.

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

Lappset Group Oy is one of the leading manufacturers of playground and sport park equipment worldwide. We make high-quality products that are hard-wearing and long-lasting and take account of the needs of users of different ages. Our products are safe, as they are designed in accordance with European safety standards. Our range of interactive products makes us a pioneer in play and sport solutions for the digital era. Our senior parks support active ageing and psychological and physical well-being. Our versatile range of park and street furniture provides rest and relaxation and opportunities for socialising. Our thematic activity parks, which are delivered on a turnkey basis, create unforgettable experiences and take play, sport and quality time to a completely new level. Lappset Creative produces activity parks for different kinds of indoor and outdoor spaces, based on your brand or chosen theme and customised to suit your needs. The PlayCare service takes care of assembling, servicing and maintaining products on a turnkey basis. Our PlayCare team also inspects and services products supplied by other manufacturers.

PRODUCT DESCRIPTION

Fell of Ara rises to nearly five metres and rewards the climbers with three storeys. This equipment for climbing and imaginary play adapts from the witch's home mountain to a cosy farm house, depending on the players needs. The low ceiling, nooks and a see-through floor on the top floor maximizes the exciting but cosy feeling. The children can go up, down and even round with the many exits and entrances.

Further information can be found at www.lappset.com.

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass- %	Material origin
Metals	10	Finland / EU / China
Minerals	0	-
Fossil materials	9	EU
Bio-based materials	81	Finland / Sweden

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C 559

Biogenic carbon content in packaging, kg C 93

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit VP-011	One product
Mass per declared unit	1500 kg
Functional unit	-
Reference service life	-

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).

X LAPPSET

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

	rodu stage		em	ss- bly ige											sy	ond t /stem ndari			
A1	A2	A3	A4	A5	B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C4											D			
x	x	x	M	ND	MND x x x x												x		
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy		Deconstr./demol.	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling	

Modules not declared = MND. Modules not relevant = MNR.

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

The products are manufactured in two locations. Metal parts are manufactured in Estonia factory and the wooden parts are manufactured

Estonia factory uses hydropower as an energy source. The painting line operates on gas as well as some forklifts. The rest of the forklifts operates on diesel. In Finland the factory uses district heating generated from wood in the vicinity of the factory. The electricity used in Rovaniemi is green electricity (Hydro 51,7%, Bio 25,7 %, Wind 15,8% and solar 6,8% according to 2022 distribution). The painting line operates on gas and there are two types if forklifts, diesel and electric. The energy utilisation of the different operations are calculated according to the treatments made for the product parts, as the energy utilisation of the different processes is known. The raw material consumption information comes from the design of the products. The waste from the process are allocated by production volumes. The ready made product parts are packaged on wooden pallets and boxes and wrapped in plastics.

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

The products are transported all over the world and the installation requirements vary according to the installation location. This stage was not included in the calculations.

PRODUCT USE AND MAINTENANCE (B1-B7)

This EPD does not cover the use phase.

Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-C4, D)

The end of life is modelled to EU area. In the end of life all the wooden parts of the product can be utilized in energy production. The utilisation rate was assumed to be 100 % as no organic waste can be landfilled in EU area. The metal can be recycled at the end of life. The assumptions in the calculations for recycling rates were 90 % for steel and 70 % for aluminium. The plastic parts are assumed to be utilised at energy production in the end of life. The EU average value 25 % for plastics landfilling was used in the calculations.

MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass. The infrastructure is not included in the calculation because of the complexity of the infrastructure elements and because the long lifecycle of the infrastructure, which make the allocation factor relatively small.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging materials	Allocated by mass
Ancillary materials	Not applicable
Manufacturing energy and waste	Allocated by mass

AVERAGES AND VARIABILITY

Type of average	No averaging
Averaging method	Not applicable
Variation in GWP-fossil for A1-A3	- %

This EPD is product and factory specific and does not contain average calculations.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. Ecoinvent 3.8 and One Click LCA databases were used as sources of environmental data.

ENVIRONMENTAL IMPACT DATA

CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP – total ¹⁾	kg CO₂e	-379	88,0	-82,9	-374	MND	4,0	12,4	2170	-8,7	-1230								
GWP – fossil	kg CO ₂ e	1240	87,9	407	1730	MND	4,0	12,4	32,6	3,2	-1230								
GWP – biogenic	kg CO ₂ e	-1630	0,00	-491	-2130	MND	0,0	0,0	2140	-11,9	0,0								
GWP – LULUC	kg CO ₂ e	17,9	0,04	0,9	18,7	MND	0,0	0,0	0,0	0,0	-0,13								
Ozone depletion pot.	kg CFC-11e	0,000 1	0,00	0,0	0,0002	MND	0,0	0,0	0,0	0,0	0,0								
Acidification potential	mol H⁺e	13,6	0,7	3,8	18,1	MND	0,0	0,0	0,3	0,0	-9,19								
EP-freshwater ²⁾	kg Pe	0,05	0,0	0,0	0,1	MND	0,0	0,0	0,0	0,0	-0,05								
EP-marine	kg Ne	1,7	0,2	1,1	2,9	MND	0,0	0,0	0,1	0,0	-1,2								
EP-terrestrial	mol Ne	46,1	1,7	15,0	62,7	MND	0,2	0,1	1,2	0,0	-13,0								
POCP ("smog") ³⁾	kg NMVOCe	5,4	0,5	3,4	9,4	MND	0,1	0,0	0,3	0,0	-4,2								
ADP-minerals & metals ⁴⁾	kg Sbe	0,0	0,0	0,0	0,0	MND	0,0	0,0	0,0	0,0	0,0								
ADP-fossil resources	MJ	1150 0	1290	5760	18600	MND	53,4	193,0	253,0	4,3	-11 200								
Water use ⁵⁾	m³e depr.	580	5,6	302	888	MND	0,1	0,9	83,9	0,0	-94,8								

1) GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and lonizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
Renew. PER as energy ⁸⁾	MJ	20600	16	16500	37100	MND	0,31	2,17	18,1	0,03	-896								
Renew. PER as material	MJ	13600	0	4050	17600	MND	0,00	0,00	-17600	-12,5	0,00								
Total use of renew. PER	MJ	34200	16	20500	54700	MND	0,31	2,17	-17600	-12,4	-896								
Non-re. PER as energy	MJ	14400	1290	5060	20800	MND	53,4	193	253	4,3	-11300								
Non-re. PER as material	MJ	720	0	1460	2180	MND	0,00	0,00	-1830	-348,0	0								
Total use of non-re. PER	MJ	15100	1290	6520	23000	MND	53,40	193	-1580	-344,0	-11300								
Secondary materials	kg	70,9	0,44	49,8	121	MND	0,02	0,05	0,62	0,00	88								
Renew. secondary fuels	MJ	0,36	0,00	425	425	MND	0,00	0,00	0,01	0,00	-0,61								
Non-ren. secondary fuels	MJ	0,00	0,00	0,00	0,00	MND	0,00	0,00	0,00	0,00	0,00								
Use of net fresh water	m³	115	0,15	304	418	MND	0,00	0,02	-0,18	0,00	-8,2								
8) PER = Primary ener	gy reso	urces.																	

END OF LIFE – WASTE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Hazardous waste	kg	242	1,60	51,20	294	MND	0,07	0,26	0,97	0,00	-43								
Non-hazardous waste	kg	1780	25,20	595	2400	MND	0,50	4,18	1240	39,6	-1510								
Radioactive waste	kg	0,06	0,01	0,02	0,08	MND	0,00	0,00	0,00	0,00	-0,02								

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
Components for re- use	kg	0,00	0,00	0,00	0,00	MND	0,00	0,00	0,0	0,00	0								
Materials for recycling	kg	4,28	0,00	10,50	14,80	MND	0,00	0,00	217	0,0	0								
Materials for energy rec	kg	0,64	0,00	0,00	0,64	MND	0,00	0,00	0	0,0	0								
Exported energy	MJ	0,00	0,00	0,00	0,00	MND	0,0	0	0	0,0	8390								

ENVIRONMENTAL IMPACTS – EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
Global Warming Pot.	kg CO₂e	1210,0	87,2	399,0	1690,0	MND	3,93	12,30	31,5	2,50	-1200								
Ozone depletion Pot.	kg CFC-11e	0,00	0,00	0,00	0,00	MND	0,00	0,00	0	0,0	0								
Acidification	kg SO₂e	9,99	0,53	2,64	13,20	MND	0,03	0,03	0	0,0	-7,86								
Eutrophication	kg PO ₄ 3e	2,61	0,08	1,15	3,84	MND	0,0	0	0	0,3	-1,6								
POCP ("smog")	kg C₂H₄e	0,46	0,02	0,22	0,70	MND	0,00	0,00	0,0	0,00	-0,4								
ADP-elements	kg Sbe	1,17	0,00	0,00	1,18	MND	0,00	0,00	0	0,0	0,0								
ADP-fossil	MJ	14200	1290	6520	22000	MND	53,40	193,0	253	4,3	-11100								

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online

This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

23-10-2023

A. M. Kloppenburg MSc.

Fell of Ara

Jour .

